Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
Diabetes Res Clin Pract ; 210: 111642, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38548109

ABSTRACT

AIMS: We examined severe hospitalised hypoglycaemia (SHH) rates in people with type 1 and type 2 diabetes in Scotland during 2016-2022, stratifying by sociodemographics. METHODS: Using the Scottish National diabetes register (SCI-Diabetes), we identified people with type 1 and type 2 diabetes alive anytime during 2016-2022. SHH events were determined through linkage to hospital admission and death registry data. We calculated annual SHH rates overall and by age, sex, and socioeconomic status. Summary estimates of time and stratum effects were obtained by fitting adjusted generalised additive models using R package mgcv. RESULTS: Rates for those under 20 with type 1 diabetes reached their minimum at the 2020-2021 transition, 30% below the study period average. A gradual decline over time also occurred among 20-49-year-olds with type 1 diabetes. Overall, females had 15% higher rates than males with type 2 diabetes (rate ratio 1.15, 95% CI 1.08-1.22). People in the most versus least deprived quintile experienced 2.58 times higher rates (95% CI 2.27-2.93) in type 1 diabetes and 2.33 times higher (95% CI 2.08-2.62) in type 2 diabetes. CONCLUSIONS: Despite advances in care, SHH remains a significant problem in diabetes. Future efforts must address the large socioeconomic disparities in SHH risks.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Hypoglycemia , Male , Female , Humans , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Cohort Studies , Hypoglycemia/epidemiology , Scotland/epidemiology
2.
Br J Ophthalmol ; 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38316534

ABSTRACT

BACKGROUND/AIMS: National guidelines of many countries set screening intervals for diabetic retinopathy (DR) based on grading of the last screening retinal images. We explore the potential of deep learning (DL) on images to predict progression to referable DR beyond DR grading, and the potential impact on assigned screening intervals, within the Scottish screening programme. METHODS: We consider 21 346 and 247 233 people with type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM), respectively, each contributing on average 4.8 and 4.4 screening intervals of which 1339 and 4675 intervals concluded with a referable screening episode. Information extracted from fundus images using DL was used to predict referable status at the end of interval and its predictive value in comparison to screening-assigned DR grade was assessed. RESULTS: The DL predictor increased the area under the receiver operating characteristic curve in comparison to a predictor using current DR grades from 0.809 to 0.87 for T1DM and from 0.825 to 0.87 for T2DM. Expected sojourn time-the time from becoming referable to being rescreened-was found to be 3.4 (T1DM) and 2.7 (T2DM) weeks less for a DL-derived policy compared with the current recall policy. CONCLUSIONS: We showed that, compared with using the current retinopathy grade, DL of fundus images significantly improves the prediction of incident referable retinopathy before the next screening episode. This can impact screening recall interval policy positively, for example, by reducing the expected time with referable disease for a fixed workload-which we show as an exemplar. Additionally, it could be used to optimise workload for a fixed sojourn time.

3.
Br J Ophthalmol ; 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37704266

ABSTRACT

BACKGROUND/AIMS: Support vector machine-based automated grading (known as iGradingM) has been shown to be safe, cost-effective and robust in the diabetic retinopathy (DR) screening (DES) programme in Scotland. It triages screening episodes as gradable with no DR versus manual grading required. The study aim was to develop a deep learning-based autograder using images and gradings from DES and to compare its performance with that of iGradingM. METHODS: Retinal images, quality assurance (QA) data and routine DR grades were obtained from national datasets in 179 944 patients for years 2006-2016. QA grades were available for 744 images. We developed a deep learning-based algorithm to detect whether either eye contained ungradable images or any DR. The sensitivity and specificity were evaluated against consensus QA grades and routine grades. RESULTS: Images used in QA which were ungradable or with DR were detected by deep learning with better specificity compared with manual graders (p<0.001) and with iGradingM (p<0.001) at the same sensitivities. Any DR according to the DES final grade was detected with 89.19% (270 392/303 154) sensitivity and 77.41% (500 945/647 158) specificity. Observable disease and referable disease were detected with sensitivities of 96.58% (16 613/17 201) and 98.48% (22 600/22 948), respectively. Overall, 43.84% of screening episodes would require manual grading. CONCLUSION: A deep learning-based system for DR grading was evaluated in QA data and images from 11 years in 50% of people attending a national DR screening programme. The system could reduce the manual grading workload at the same sensitivity compared with the current automated grading system.

4.
Int J Med Inform ; 175: 105072, 2023 07.
Article in English | MEDLINE | ID: mdl-37167840

ABSTRACT

AIMS: This study's objective was to evaluate whether deep learning (DL) on retinal photographs from a diabetic retinopathy screening programme improve prediction of incident cardiovascular disease (CVD). METHODS: DL models were trained to jointly predict future CVD risk and CVD risk factors and used to output a DL score. Poisson regression models including clinical risk factors with and without a DL score were fitted to study cohorts with 2,072 and 38,730 incident CVD events in type 1 (T1DM) and type 2 diabetes (T2DM) respectively. RESULTS: DL scores were independently associated with incident CVD with adjusted standardised incidence rate ratios of 1.14 (P = 3 × 10-04 95 % CI (1.06, 1.23)) and 1.16 (P = 4 × 10-33 95 % CI (1.13, 1.18)) in T1DM and T2DM cohorts respectively. The differences in predictive performance between models with and without a DL score were statistically significant (differences in test log-likelihood 6.7 and 51.1 natural log units) but the increments in C-statistics from 0.820 to 0.822 and from 0.709 to 0.711 for T1DM and T2DM respectively, were small. CONCLUSIONS: These results show that in people with diabetes, retinal photographs contain information on future CVD risk. However for this to contribute appreciably to clinical prediction of CVD further approaches, including exploitation of serial images, need to be evaluated.


Subject(s)
Cardiovascular Diseases , Deep Learning , Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Humans , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/epidemiology , Prospective Studies , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , Risk Factors , Scotland/epidemiology , Heart Disease Risk Factors
5.
BMJ Open ; 12(10): e063046, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36223968

ABSTRACT

PURPOSE: The Scottish Diabetes Research Network (SDRN)-diabetes research platform was established to combine disparate electronic health record data into research-ready linked datasets for diabetes research in Scotland. The resultant cohort, 'The SDRN-National Diabetes Dataset (SDRN-NDS)', has many uses, for example, understanding healthcare burden and socioeconomic trends in disease incidence and prevalence, observational pharmacoepidemiology studies and building prediction tools to support clinical decision making. PARTICIPANTS: We estimate that >99% of those diagnosed with diabetes nationwide are captured into the research platform. Between 2006 and mid-2020, the cohort comprised 472 648 people alive with diabetes at any point in whom there were 4 million person-years of follow-up. Of the cohort, 88.1% had type 2 diabetes, 8.8% type 1 diabetes and 3.1% had other types (eg, secondary diabetes). Data are captured from all key clinical encounters for diabetes-related care, including diabetes clinic, primary care and podiatry and comprise clinical history and measurements with linkage to blood results, microbiology, prescribed and dispensed drug and devices, retinopathy screening, outpatient, day case and inpatient episodes, birth outcomes, cancer registry, renal registry and causes of death. FINDINGS TO DATE: There have been >50 publications using the SDRN-NDS. Examples of recent key findings include analysis of the incidence and relative risks for COVID-19 infection, drug safety of insulin glargine and SGLT2 inhibitors, life expectancy estimates, evaluation of the impact of flash monitors on glycaemic control and diabetic ketoacidosis and time trend analysis showing that diabetic ketoacidosis (DKA) remains a major cause of death under age 50 years. The findings have been used to guide national diabetes strategy and influence national and international guidelines. FUTURE PLANS: The comprehensive SDRN-NDS will continue to be used in future studies of diabetes epidemiology in the Scottish population. It will continue to be updated at least annually, with new data sources linked as they become available.


Subject(s)
COVID-19 , Diabetes Mellitus, Type 2 , Diabetic Ketoacidosis , Sodium-Glucose Transporter 2 Inhibitors , Humans , Middle Aged , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/epidemiology , Insulin Glargine , Scotland/epidemiology
6.
PLoS One ; 17(8): e0271110, 2022.
Article in English | MEDLINE | ID: mdl-35951518

ABSTRACT

BACKGROUND: We report the first study to estimate the socioeconomic gap in period life expectancy (LE) and life years spent with and without complications in a national cohort of individuals with type 1 diabetes. METHODS: This retrospective cohort study used linked healthcare records from SCI-Diabetes, the population-based diabetes register of Scotland. We studied all individuals aged 50 and older with a diagnosis of type 1 diabetes who were alive and residing in Scotland on 1 January 2013 (N = 8591). We used the Scottish Index of Multiple Deprivation (SIMD) 2016 as an area-based measure of socioeconomic deprivation. For each individual, we constructed a history of transitions by capturing whether individuals developed retinopathy/maculopathy, cardiovascular disease, chronic kidney disease, and diabetic foot, or died throughout the study period, which lasted until 31 December 2018. Using parametric multistate survival models, we estimated total and state-specific LE at an attained age of 50. RESULTS: At age 50, remaining LE was 22.2 years (95% confidence interval (95% CI): 21.6 - 22.8) for males and 25.1 years (95% CI: 24.4 - 25.9) for females. Remaining LE at age 50 was around 8 years lower among the most deprived SIMD quintile when compared with the least deprived SIMD quintile: 18.7 years (95% CI: 17.5 - 19.9) vs. 26.3 years (95% CI: 24.5 - 28.1) among males, and 21.2 years (95% CI: 19.7 - 22.7) vs. 29.3 years (95% CI: 27.5 - 31.1) among females. The gap in life years spent without complications was around 5 years between the most and the least deprived SIMD quintile: 4.9 years (95% CI: 3.6 - 6.1) vs. 9.3 years (95% CI: 7.5 - 11.1) among males, and 5.3 years (95% CI: 3.7 - 6.9) vs. 10.3 years (95% CI: 8.3 - 12.3) among females. SIMD differences in transition rates decreased marginally when controlling for time-updated information on risk factors such as HbA1c, blood pressure, BMI, or smoking. CONCLUSIONS: In addition to societal interventions, tailored support to reduce the impact of diabetes is needed for individuals from low socioeconomic backgrounds, including access to innovations in management of diabetes and the prevention of complications.


Subject(s)
Diabetes Complications , Diabetes Mellitus, Type 1 , Aged , Diabetes Complications/complications , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/epidemiology , Female , Humans , Life Expectancy , Male , Middle Aged , Retrospective Studies , Scotland/epidemiology , Socioeconomic Factors
7.
Diabetes Care ; 44(9): 2010-2017, 2021 09.
Article in English | MEDLINE | ID: mdl-34244330

ABSTRACT

OBJECTIVE: Whether advances in the management of type 1 diabetes are reducing rates of diabetic ketoacidosis (DKA) is unclear. We investigated time trends in DKA rates in a national cohort of individuals with type 1 diabetes monitored for 14 years, overall and by socioeconomic characteristics. RESEARCH DESIGN AND METHODS: All individuals in Scotland with type 1 diabetes who were alive and at least 1 year old between 1 January 2004 and 31 December 2018 were identified using the national register (N = 37,939). DKA deaths and hospital admissions were obtained through linkage to Scottish national death and morbidity records. Bayesian regression was used to test for DKA time trends and association with risk markers, including socioeconomic deprivation. RESULTS: There were 30,427 DKA admissions and 472 DKA deaths observed over 393,223 person-years at risk. DKA event rates increased over the study period (incidence rate ratio [IRR] per year 1.058 [95% credibility interval 1.054-1.061]). Males had lower rates than females (IRR male-to-female 0.814 [0.776-0.855]). DKA incidence rose in all age-groups other than 10- to 19-year-olds, in whom rates were the highest, but fell over the study. There was a large socioeconomic differential (IRR least-to-most deprived quintile 0.446 [0.406-0.490]), which increased during follow-up. Insulin pump use or completion of structured education were associated with lower DKA rates, and antidepressant and methadone prescription were associated with higher DKA rates. CONCLUSIONS: DKA incidence has risen since 2004, except in 10- to 19-year-olds. Of particular concern are the strong and widening socioeconomic disparities in DKA outcomes. Efforts to prevent DKA, especially in vulnerable groups, require strengthening.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetic Ketoacidosis , Bayes Theorem , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/epidemiology , Diabetic Ketoacidosis/epidemiology , Educational Status , Female , Humans , Incidence , Infant , Male , Retrospective Studies , Scotland/epidemiology
8.
Diabetologia ; 64(9): 2001-2011, 2021 09.
Article in English | MEDLINE | ID: mdl-34106282

ABSTRACT

AIMS/HYPOTHESIS: We aimed to report current rates of CVD in type 1 diabetes and to develop a CVD risk prediction tool for type 1 diabetes. METHODS: A cohort of 27,527 people with type 1 diabetes without prior CVD was derived from the national register in Scotland. Incident CVD events during 199,552 person-years of follow-up were ascertained using hospital admissions and death registers. A Poisson regression model of CVD was developed and then validated in the Swedish National Diabetes Register (n = 33,183). We compared the percentage with a high 10 year CVD risk (i.e., ≥10%) using the model with the percentage eligible for statins using current guidelines by age. RESULTS: The age-standardised rate of CVD per 100,000 person-years was 4070 and 3429 in men and women, respectively, with type 1 diabetes in Scotland, and 4014 and 3956 in men and women in Sweden. The final model was well calibrated (Hosmer-Lemeshow test p > 0.05) and included a further 22 terms over a base model of age, sex and diabetes duration (C statistic 0.82; 95% CI 0.81, 0.83). The model increased the base model C statistic from 0.66 to 0.80, from 0.60 to 0.75 and from 0.62 to 0.68 in those aged <40, 40-59 and ≥ 60 years, respectively (all p values <0.005). The model required minimal calibration in Sweden and had a C statistic of 0.85. Under current guidelines, >90% of those aged 20-39 years and 100% of those ≥40 years with type 1 diabetes were eligible for statins, but it was not until age 65 upwards that 100% had a modelled risk of CVD ≥10% in 10 years. CONCLUSIONS/INTERPRETATION: A prediction tool such as that developed here can provide individualised risk predictions. This 10 year CVD risk prediction tool could facilitate patient discussions regarding appropriate statin prescribing. Apart from 10 year risk, such discussions may also consider longer-term CVD risk, the potential for greater benefits from early vs later statin intervention, the potential impact on quality of life of an early CVD event and evidence on safety, all of which could influence treatment decisions, particularly in younger people with type 1 diabetes.


Subject(s)
Cardiovascular Diseases , Diabetes Mellitus, Type 1 , Adult , Aged , Cardiovascular Diseases/epidemiology , Diabetes Mellitus, Type 1/epidemiology , Female , Heart Disease Risk Factors , Humans , Male , Middle Aged , Quality of Life , Risk Factors , Young Adult
9.
Lancet Diabetes Endocrinol ; 9(2): 82-93, 2021 02.
Article in English | MEDLINE | ID: mdl-33357491

ABSTRACT

BACKGROUND: We aimed to ascertain the cumulative risk of fatal or critical care unit-treated COVID-19 in people with diabetes and compare it with that of people without diabetes, and to investigate risk factors for and build a cross-validated predictive model of fatal or critical care unit-treated COVID-19 among people with diabetes. METHODS: In this cohort study, we captured the data encompassing the first wave of the pandemic in Scotland, from March 1, 2020, when the first case was identified, to July 31, 2020, when infection rates had dropped sufficiently that shielding measures were officially terminated. The participants were the total population of Scotland, including all people with diabetes who were alive 3 weeks before the start of the pandemic in Scotland (estimated Feb 7, 2020). We ascertained how many people developed fatal or critical care unit-treated COVID-19 in this period from the Electronic Communication of Surveillance in Scotland database (on virology), the RAPID database of daily hospitalisations, the Scottish Morbidity Records-01 of hospital discharges, the National Records of Scotland death registrations data, and the Scottish Intensive Care Society and Audit Group database (on critical care). Among people with fatal or critical care unit-treated COVID-19, diabetes status was ascertained by linkage to the national diabetes register, Scottish Care Information Diabetes. We compared the cumulative incidence of fatal or critical care unit-treated COVID-19 in people with and without diabetes using logistic regression. For people with diabetes, we obtained data on potential risk factors for fatal or critical care unit-treated COVID-19 from the national diabetes register and other linked health administrative databases. We tested the association of these factors with fatal or critical care unit-treated COVID-19 in people with diabetes, and constructed a prediction model using stepwise regression and 20-fold cross-validation. FINDINGS: Of the total Scottish population on March 1, 2020 (n=5 463 300), the population with diabetes was 319 349 (5·8%), 1082 (0·3%) of whom developed fatal or critical care unit-treated COVID-19 by July 31, 2020, of whom 972 (89·8%) were aged 60 years or older. In the population without diabetes, 4081 (0·1%) of 5 143 951 people developed fatal or critical care unit-treated COVID-19. As of July 31, the overall odds ratio (OR) for diabetes, adjusted for age and sex, was 1·395 (95% CI 1·304-1·494; p<0·0001, compared with the risk in those without diabetes. The OR was 2·396 (1·815-3·163; p<0·0001) in type 1 diabetes and 1·369 (1·276-1·468; p<0·0001) in type 2 diabetes. Among people with diabetes, adjusted for age, sex, and diabetes duration and type, those who developed fatal or critical care unit-treated COVID-19 were more likely to be male, live in residential care or a more deprived area, have a COVID-19 risk condition, retinopathy, reduced renal function, or worse glycaemic control, have had a diabetic ketoacidosis or hypoglycaemia hospitalisation in the past 5 years, be on more anti-diabetic and other medication (all p<0·0001), and have been a smoker (p=0·0011). The cross-validated predictive model of fatal or critical care unit-treated COVID-19 in people with diabetes had a C-statistic of 0·85 (0·83-0·86). INTERPRETATION: Overall risks of fatal or critical care unit-treated COVID-19 were substantially elevated in those with type 1 and type 2 diabetes compared with the background population. The risk of fatal or critical care unit-treated COVID-19, and therefore the need for special protective measures, varies widely among those with diabetes but can be predicted reasonably well using previous clinical history. FUNDING: None.


Subject(s)
COVID-19/epidemiology , COVID-19/therapy , Diabetes Mellitus/epidemiology , Diabetes Mellitus/therapy , Population Surveillance , Adult , Aged , Aged, 80 and over , COVID-19/diagnosis , Cohort Studies , Critical Care/trends , Female , Humans , Male , Middle Aged , Risk Factors , Scotland/epidemiology , Young Adult
10.
Nature ; 580(7803): 402-408, 2020 04.
Article in English | MEDLINE | ID: mdl-32296183

ABSTRACT

Global insights into cellular organization and genome function require comprehensive understanding of the interactome networks that mediate genotype-phenotype relationships1,2. Here we present a human 'all-by-all' reference interactome map of human binary protein interactions, or 'HuRI'. With approximately 53,000 protein-protein interactions, HuRI has approximately four times as many such interactions as there are high-quality curated interactions from small-scale studies. The integration of HuRI with genome3, transcriptome4 and proteome5 data enables cellular function to be studied within most physiological or pathological cellular contexts. We demonstrate the utility of HuRI in identifying the specific subcellular roles of protein-protein interactions. Inferred tissue-specific networks reveal general principles for the formation of cellular context-specific functions and elucidate potential molecular mechanisms that might underlie tissue-specific phenotypes of Mendelian diseases. HuRI is a systematic proteome-wide reference that links genomic variation to phenotypic outcomes.


Subject(s)
Proteome/metabolism , Extracellular Space/metabolism , Humans , Organ Specificity , Protein Interaction Mapping
11.
Cell Syst ; 10(1): 25-38.e10, 2020 01 22.
Article in English | MEDLINE | ID: mdl-31668799

ABSTRACT

Many traits are complex, depending non-additively on variant combinations. Even in model systems, such as the yeast S. cerevisiae, carrying out the high-order variant-combination testing needed to dissect complex traits remains a daunting challenge. Here, we describe "X-gene" genetic analysis (XGA), a strategy for engineering and profiling highly combinatorial gene perturbations. We demonstrate XGA on yeast ABC transporters by engineering 5,353 strains, each deleted for a random subset of 16 transporters, and profiling each strain's resistance to 16 compounds. XGA yielded 85,648 genotype-to-resistance observations, revealing high-order genetic interactions for 13 of the 16 transporters studied. Neural networks yielded intuitive functional models and guided exploration of fluconazole resistance, which was influenced non-additively by five genes. Together, our results showed that highly combinatorial genetic perturbation can functionally dissect complex traits, supporting pursuit of analogous strategies in human cells and other model systems.


Subject(s)
Biological Transport/genetics , Membrane Transport Proteins/genetics , Humans
12.
IMA Fungus ; 9(1): 91-105, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30018874

ABSTRACT

Species identification of yeasts and other Fungi is currently carried out with Sanger sequences of selected molecular markers, mainly from the ribosomal DNA operon, characterized by hundreds of tandem repeats of the 18S, ITS1, 5.8S, ITS2 and LSU loci. The ITS region has been recently proposed as a primary barcode marker making this region the most used one in taxonomy, phylogeny and diagnostics. The introduction of NGS is providing tools of high efficacy and relatively low cost to amplify two or more markers simultaneously with great sequencing depth. However, the presence of intra-genomic variability between the repeats requires specific analytical procedures and pipelines. In this study, 286 strains belonging to 11 pathogenic yeasts species were analysed with NGS of the region spanning from ITS1 to the D1/D2 domain of the LSU encoding ribosomal DNA. Results showed that relatively high heterogeneity can hamper the use of these sequences for the identification of single strains and even more of complex microbial mixtures. These observations point out that the metagenomics studies could be affected by species inflection at levels higher than currently expected.

13.
Trends Hear ; 22: 2331216518776817, 2018.
Article in English | MEDLINE | ID: mdl-29848183

ABSTRACT

The ubiquity and cheapness of miniature low-power sensors, digital processing, and large amounts of storage contained in small packages has heralded the ability to acquire large amounts of data about systems during their course of operation. The size and complexity of the data sets so generated have colloquially been labeled "big data." The computer science field of "data mining" has arisen with the purpose of extracting meaning from such data, expressly looking for patterns that not only link historic observations but also predict future behavior. This overview article considers the process, techniques, and interpretation of data mining, with specific focus on its application in audiology. Modern hearing instruments contain data-logging technology to record data separate from the audio stream, such as the acoustic environments in which the device was being used and how the signal processing was consequently operating. Combined with details about the patient, such as the audiogram, the variety of data generated lends itself to a data mining approach. To date, reports of the use and interpretation of these data have been mostly constrained to questions such as looking for changes in patterns of daily use, or the degree and direction of volume control manipulation as the patient's experience with a hearing aid changes. In this, and an accompanying results paper, the practical applications of some data mining techniques are described as applied to a large data set of examples of real-world device usage, as supplied by a hearing aid manufacturer.


Subject(s)
Audiology , Big Data , Data Mining/methods , Hearing Aids , Hearing Tests , Humans , Signal Processing, Computer-Assisted
14.
Trends Hear ; 22: 2331216518773632, 2018.
Article in English | MEDLINE | ID: mdl-29848201

ABSTRACT

Modern hearing instruments contain logging technology to record data, such as the acoustic environments in which the device is being used and how the signal processing is consequently operating. Combined with patient data, such as the audiogram, this information gives a more comprehensive picture of the user and their relationship with the aid. Here, a relatively large, anonymized dataset (>300,000 devices, >150,000 wearers) from a hearing-aid manufacturer was data mined for connections between subsets of the logged varieties of data. Apart from replicating links that have previously been reported in labor-intensive studies, a link between device style (in-the-ear/behind-the-ear) and the sound levels of encountered environments was demonstrated, suggesting that some device types are more successful from a lifestyle perspective. Furthermore, the data also suggested links between the audiogram and the sound environments in which the aid was operated. Modeling the expected link between the environment and the microphone directionality settings revealed patterns of either abnormal fitting or where the aid was not operating correctly-factors that may indicate a failed fitting. Given the necessarily redacted nature of the dataset, the reported findings represent a proof-of-concept of the use of relatively large-scale data mining to guide and assess hearing-aid fitting procedures for possible benefits to the clinician, manufacturer, and patient.


Subject(s)
Data Mining , Hearing Aids , Prosthesis Fitting , Signal Processing, Computer-Assisted , Acoustics , Female , Humans , Male , Middle Aged
15.
Mol Syst Biol ; 14(5): e7985, 2018 05 28.
Article in English | MEDLINE | ID: mdl-29807908

ABSTRACT

Condition-dependent genetic interactions can reveal functional relationships between genes that are not evident under standard culture conditions. State-of-the-art yeast genetic interaction mapping, which relies on robotic manipulation of arrays of double-mutant strains, does not scale readily to multi-condition studies. Here, we describe barcode fusion genetics to map genetic interactions (BFG-GI), by which double-mutant strains generated via en masse "party" mating can also be monitored en masse for growth to detect genetic interactions. By using site-specific recombination to fuse two DNA barcodes, each representing a specific gene deletion, BFG-GI enables multiplexed quantitative tracking of double mutants via next-generation sequencing. We applied BFG-GI to a matrix of DNA repair genes under nine different conditions, including methyl methanesulfonate (MMS), 4-nitroquinoline 1-oxide (4NQO), bleomycin, zeocin, and three other DNA-damaging environments. BFG-GI recapitulated known genetic interactions and yielded new condition-dependent genetic interactions. We validated and further explored a subnetwork of condition-dependent genetic interactions involving MAG1, SLX4, and genes encoding the Shu complex, and inferred that loss of the Shu complex leads to an increase in the activation of the checkpoint protein kinase Rad53.


Subject(s)
Chromosome Mapping , DNA Barcoding, Taxonomic , DNA Damage , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , DNA Repair , Epistasis, Genetic , Gene Deletion , Genetic Loci , High-Throughput Nucleotide Sequencing , Methyl Methanesulfonate , Models, Theoretical , Promoter Regions, Genetic , Reproducibility of Results
16.
Mol Autism ; 9: 12, 2018.
Article in English | MEDLINE | ID: mdl-29484149

ABSTRACT

Background: Neurofibromatosis 1 (NF1) is a monogenic model for syndromic autism. Statins rescue the social and cognitive phenotype in animal knockout models, but translational trials with subjects > 8 years using cognition/behaviour outcomes have shown mixed results. This trial breaks new ground by studying statin effects for the first time in younger children with NF1 and co-morbid autism and by using multiparametric imaging outcomes. Methods: A single-site triple-blind RCT of simvastatin vs. placebo was done. Assessment (baseline and 12-week endpoint) included peripheral MAPK assay, awake magnetic resonance imaging spectroscopy (MRS; GABA and glutamate+glutamine (Glx)), arterial spin labelling (ASL), apparent diffusion coefficient (ADC), resting state functional MRI, and autism behavioural outcomes (Aberrant Behaviour Checklist and Clinical Global Impression). Results: Thirty subjects had a mean age of 8.1 years (SD 1.8). Simvastatin was well tolerated. The amount of imaging data varied by test. Simvastatin treatment was associated with (i) increased frontal white matter MRS GABA (t(12) = - 2.12, p = .055), GABA/Glx ratio (t(12) = - 2.78, p = .016), and reduced grey nuclei Glx (ANCOVA p < 0.05, Mann-Whitney p < 0.01); (ii) increased ASL perfusion in ventral diencephalon (Mann-Whitney p < 0.01); and (iii) decreased ADC in cingulate gyrus (Mann-Whitney p < 0.01). Machine-learning classification of imaging outcomes achieved 79% (p < .05) accuracy differentiating groups at endpoint against chance level (64%, p = 0.25) at baseline. Three of 12 (25%) simvastatin cases compared to none in placebo met 'clinical responder' criteria for behavioural outcome. Conclusions: We show feasibility of peripheral MAPK assay and autism symptom measurement, but the study was not powered to test effectiveness. Multiparametric imaging suggests possible simvastatin effects in brain areas previously associated with NF1 pathophysiology and the social brain network. Trial registration: EU Clinical Trial Register (EudraCT) 2012-005742-38 (www.clinicaltrialsregister.eu).


Subject(s)
Autistic Disorder/drug therapy , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Neurofibromatosis 1/drug therapy , Simvastatin/therapeutic use , Autistic Disorder/blood , Autistic Disorder/complications , Biomarkers/blood , Brain/diagnostic imaging , Child , Female , Glutamic Acid/blood , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/administration & dosage , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Male , Mitogen-Activated Protein Kinases/blood , Neurofibromatosis 1/blood , Neurofibromatosis 1/complications , Simvastatin/administration & dosage , Simvastatin/adverse effects , gamma-Aminobutyric Acid/blood
17.
Mol Syst Biol ; 13(12): 957, 2017 12 21.
Article in English | MEDLINE | ID: mdl-29269382

ABSTRACT

Although we now routinely sequence human genomes, we can confidently identify only a fraction of the sequence variants that have a functional impact. Here, we developed a deep mutational scanning framework that produces exhaustive maps for human missense variants by combining random codon mutagenesis and multiplexed functional variation assays with computational imputation and refinement. We applied this framework to four proteins corresponding to six human genes: UBE2I (encoding SUMO E2 conjugase), SUMO1 (small ubiquitin-like modifier), TPK1 (thiamin pyrophosphokinase), and CALM1/2/3 (three genes encoding the protein calmodulin). The resulting maps recapitulate known protein features and confidently identify pathogenic variation. Assays potentially amenable to deep mutational scanning are already available for 57% of human disease genes, suggesting that DMS could ultimately map functional variation for all human disease genes.


Subject(s)
DNA Mutational Analysis/methods , Mutation, Missense/genetics , Calmodulin/genetics , Disease/genetics , Humans , Machine Learning , Phenotype , Phylogeny , Reproducibility of Results , SUMO-1 Protein/genetics , Ubiquitin-Conjugating Enzymes/genetics , Ubiquitin-Conjugating Enzymes/metabolism
18.
Science ; 354(6312)2016 11 04.
Article in English | MEDLINE | ID: mdl-27811238

ABSTRACT

Genetic suppression occurs when the phenotypic defects caused by a mutation in a particular gene are rescued by a mutation in a second gene. To explore the principles of genetic suppression, we examined both literature-curated and unbiased experimental data, involving systematic genetic mapping and whole-genome sequencing, to generate a large-scale suppression network among yeast genes. Most suppression pairs identified novel relationships among functionally related genes, providing new insights into the functional wiring diagram of the cell. In addition to suppressor mutations, we identified frequent secondary mutations,in a subset of genes, that likely cause a delay in the onset of stationary phase, which appears to promote their enrichment within a propagating population. These findings allow us to formulate and quantify general mechanisms of genetic suppression.


Subject(s)
Gene Regulatory Networks , Genes, Fungal , Genes, Suppressor , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae/genetics , Suppression, Genetic , Cell Physiological Phenomena/genetics , Chromosome Mapping
19.
PLoS Genet ; 12(9): e1006275, 2016 09.
Article in English | MEDLINE | ID: mdl-27588687

ABSTRACT

The emergence and prevalence of drug resistance demands streamlined strategies to identify drug resistant variants in a fast, systematic and cost-effective way. Methods commonly used to understand and predict drug resistance rely on limited clinical studies from patients who are refractory to drugs or on laborious evolution experiments with poor coverage of the gene variants. Here, we report an integrative functional variomics methodology combining deep sequencing and a Bayesian statistical model to provide a comprehensive list of drug resistance alleles from complex variant populations. Dihydrofolate reductase, the target of methotrexate chemotherapy drug, was used as a model to identify functional mutant alleles correlated with methotrexate resistance. This systematic approach identified previously reported resistance mutations, as well as novel point mutations that were validated in vivo. Use of this systematic strategy as a routine diagnostics tool widens the scope of successful drug research and development.


Subject(s)
Drug Resistance, Neoplasm/genetics , Neoplasms/drug therapy , Tetrahydrofolate Dehydrogenase/metabolism , Alleles , Bayes Theorem , Folic Acid Antagonists/therapeutic use , Humans , Methotrexate/therapeutic use , Mutation , Neoplasms/genetics , Tetrahydrofolate Dehydrogenase/genetics
20.
Mol Syst Biol ; 12(4): 863, 2016 Apr 22.
Article in English | MEDLINE | ID: mdl-27107012

ABSTRACT

High-throughput binary protein interaction mapping is continuing to extend our understanding of cellular function and disease mechanisms. However, we remain one or two orders of magnitude away from a complete interaction map for humans and other major model organisms. Completion will require screening at substantially larger scales with many complementary assays, requiring further efficiency gains in proteome-scale interaction mapping. Here, we report Barcode Fusion Genetics-Yeast Two-Hybrid (BFG-Y2H), by which a full matrix of protein pairs can be screened in a single multiplexed strain pool. BFG-Y2H uses Cre recombination to fuse DNA barcodes from distinct plasmids, generating chimeric protein-pair barcodes that can be quantified via next-generation sequencing. We applied BFG-Y2H to four different matrices ranging in scale from ~25 K to 2.5 M protein pairs. The results show that BFG-Y2H increases the efficiency of protein matrix screening, with quality that is on par with state-of-the-art Y2H methods.


Subject(s)
Centrosome/metabolism , Protein Interaction Mapping/methods , Proteome/metabolism , Saccharomyces cerevisiae/genetics , Chromosomes, Human/metabolism , Gene Library , High-Throughput Nucleotide Sequencing , Humans , Protein Binding , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...